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Abstract

In the past decades, regional air pollution characterized by photochemical smog and
grey haze-fog has become a severe environmental problem in China. To investigate
this, a field measurement campaign was performed in the Huabei region, located be-
tween 32◦–42◦ N latitude in Eastern China, during the period 2 April–16 May 2006 as5

part of the project “Influence of Pollution on Aerosols and Cloud Microphysics in North
China” (IPAC-NC). It was found that strong pollution emissions from urban and indus-
trial centers accumulate in the lower atmosphere over the core area of Huabei. We
observed widespread, very high SO2 mixing ratios, about 20–40 ppbv at 0.5–1.5 km
altitude and 10–30 ppbv at 1.5–3.0 km altitude. Average CO mixing ratios were 0.65–10

0.7 ppmv at 0.5–1.5 km altitude, and very high CO around 1 ppmv was observed during
some flights, and even higher levels at the surface. The high pollution concentrations
were associated with enhanced levels of OH and HO2 radicals, calculated with a chemi-
cal box model constrained by the measurements. The maximum OH concentration was
6.9×106 molecules cm−3 (∼0.29 pptv) at an altitude of ∼1 km, remarkably higher than15

5.4×106 molecules cm−3 (∼0.22 pptv) at the surface. In the upper part of the bound-
ary layer and in the lower free troposphere, high CO and SO2 competed with relatively
less NO2 in reacting with OH, being efficiently recycled through HO2, preventing a net
loss of HOx radicals. In addition to reactive hydrocarbons and CO, the oxidation of
SO2 caused significant ozone production over Huabei (up to ∼13 % or 2.0 ppbv h−1 at20

∼0.8 km). The enhanced OH increased the formation of condensable species by the
oxidation of volatile precursor gases, adding to the high loadings of mineral dust par-
ticles. Our results indicate that the lower atmosphere over Huabei is not only strongly
polluted but also acts as an oxidation pool over Eastern China.
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1 Introduction

The growing influence of gas and aerosol emissions from major urban and industrial
centers on air quality and climate on regional to global scales is of great concern. In
recent decades, intensive field campaigns and model studies have demonstrated that
global air pollution is strongly affected by regional hot spots of air pollution (Lelieveld5

et al., 2002a; Akimoto, 2003; Lawrence et al., 2007). These hot spot regions of severe
air pollution often include megacities (>10 million population) with strongly enhanced
emissions from traffic, power generation and industrial activities (Molina and Molina,
2004; Gurjar et al., 2008). While urban and regional pollution in the traditional indus-
trialized countries continues to provide environmental challenges, the attention for de-10

veloping and newly industrialized regions, e.g., in Middle America (Molina et al., 2007,
2010), the Mediterranean (Kanakidou et al., 2011), Middle East (Lelieveld et al., 2009)
and South and East Asia (Chan and Yao, 2008; Zhang et al., 2008c; Lawrence and
Lelieveld, 2010; Ma et al., 2010) is intensifying.

Photochemical smog has become a major concern in the urban environment (Molina15

and Molina, 2004). Emissions of nitrogen oxides (NOx ≡NO+NO2), carbon monoxide
(CO) and volatile organic compounds (VOCs) drive the photochemical formation of
ozone (O3) and other oxidants, degrading air quality and adversely affecting human
health, ecosystems and agricultural productivity (Molina et al., 2010). Atmospheric
ozone production, P(O3), over urban centers generally involves different stages, from20

being VOC-sensitive near the source(s) to being rather more NOx-sensitive further
downwind (Sillman, 1999; Solomon et al., 2000; Kleinman et al., 2005; Kuhn et
al., 2010). Photochemical smog episodes are accompanied by high aerosol loads,
causing haze pollution with potential impacts on human health, climate and the hy-
drological cycle (Ramanathan et al., 2005; Pope and Dockery, 2006; Ma et al.,25

2010). These aerosols, mainly consisting of fine particles, originate either directly
from traffic, industrial activity and biomass burning (primary particles), or indirectly
from the gas-to-particle conversion of low-volatile condensable inorganic and organic
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gases (secondary particles), formed via a complex sequence of oxidation reactions
of gaseous precursors from the same sources (Seinfeld and Pandis, 1998; Kulmala,
2003; Jimenez et al., 2009; Apel et al., 2010).

The oxidation of gaseous precursors of ozone and secondary aerosols is mainly ini-
tiated by hydroxyl radicals (OH), formed primarily through the photolysis of O3, nitrous5

acid (HNO2), and hydrogen peroxide (H2O2) (Levy, 1971; Ehhalt, 1999).

O3+hν (λ<320 nm)−→O(1D)+O2

O(1D)+H2O −→ 2OH. (R1)

HNO2+hν −→ OH+NO. (R2)

H2O2+hν −→ 2OH. (R3)

The reactions of OH with CO and VOCs (expressed as RH in Eq. (R5)) produce hy-
droperoxy (HO2) and organic peroxy (RO2) radicals, respectively.

CO+OH
O2−→ HO2+CO2 . (R4)

RH+OH
O2−→ RO2+H2O. (R5)

RO2 (expressed as R′CH2O2 in Eq. (R6)) is converted to HO2 through reaction with
NO. HO2 further reacts with NO to recycle OH.

R′CH2O2+NO
O2−→ R′CHO+NO2+HO2 . (R6)

HO2+NO −→ OH+NO2 . (R7)

NO2 produces O3 and reforms NO upon photolysis by sunlight.

NO2+hν (λ<420 nm)
O2−→NO+O3 . (R8)
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In addition to the effective photodissociation of ozone Eq. (R1), ozone loss occurs
through the HOx (≡OH+HO2) catalytic cycle and addition reaction with alkenes.

HO2+O3 −→ OH+2O2 . (R9)

OH+O3 −→ HO2+O2 . (R10)

alkene+O3 −→ aldehyde+ radicals. (R11)

Loss of OH occurs through the reaction with NO2, forming nitric acid (HNO3).

NO2+OH+M−→HNO3+M (R12)

O3 production through the catalytic cycle between NO and NO2 is thus associated
with the competition for OH radicals by CO, VOCs and NOx, and a potential recycling
between OH and HO2 (Kuhn et al., 2010). Additional OH results from the photolysis5

of O3 and can be amplified in the oxidation of VOCs, but the chemical mechanisms
have not yet been fully understood (Lelieveld et al., 2008; Hofzumahaus et al., 2009).
How OH recycling may enhance the efficiency of atmospheric oxidation processes
on urban to global scales needs further investigation of the organic radical chemistry,
though empirical HOx budget studies have recently been reported, e.g., for Mexico City10

(Volkamer et al., 2010; Sheehy et al., 2010), for the rural area in the Pear River Delta,
China (Lou et al., 2010), for the boundary layer and free troposphere (FT) over West
Africa (Commane et al., 2010), for the tropical troposphere over the Amazon rainforest
(Martinez et al., 2010; Kubistin et al., 2010), and for the Artic troposphere (Mao et al.,
2010; Lelieveld, 2010).15

Regional air pollution characterized by photochemical smog and haze-fog has been
recognized as one of the severe environmental problems in China (Zhang et al., 2008c;
Ma et al., 2010). North China, or Huabei in Chinese (hereafter we use the latter), is
a geographical region located between 32◦–42◦ N latitude in the northern part of East-
ern China, including several provinces and large municipalities, e.g., Beijing and Tian-20

jin. Over the past decades, the region has actually become one of the most severely
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polluted regions worldwide. Air quality in Beijing especially in relation to the 2008 Bei-
jing Olympics has been addressed by numerous studies, including special sections in
the “Journal of Geophysical Research – Atmospheres” and “Atmospheric Chemistry
and Physics”. Air pollution in Beijing and the surrounding area impacts the air quality in
Huabei, indicated by ground-based measurements in urban and suburban sites (Shao5

et al., 2009; Lu et al., 2010; Wang et al., 2010), rural sites (Li et al., 2007; Lin et al.,
2009; Pan et al., 2009; Wang et al., 2009, 2010), regional background stations (Yan et
al., 2008; Lin et al., 2008; Meng et al., 2009) and by aircraft measurements (Ding et
al., 2008; Zhang et al., 2009a; Chen et al., 2009; Ma et al., 2010).

The air pollution outflow from Huabei may even impact tropospheric chemistry on10

continental and global scales. Several international field campaigns have investigated
the outflow of emissions from East Asia, primarily China, e.g., TRACE-P (Transport and
Chemical Evolution over the Pacific) (Jacob et al., 2003) and INTEX-B (Intercontinental
Chemical Transport Experiment-B) (Singh et al., 2009). The results showed that air
pollutants from China can be detected over North America and even Europe through15

long-distance transport and associated chemical transformation processes (Zhang et
al., 2008b; Barletta et al., 2009; Fiedler et al., 2009; Cooper et al., 2010). Research
on photochemical and transport characteristics of regional pollution based on aircraft
measurements within the source regions of China such as Huabei has yet been rarely
reported. Apart from emissions in urban and industrial centers, Huabei is also affected20

by airborne mineral dust, especially during springtime. The combination of dust with
ozone and aerosol precursors, e.g., NOx, VOCs and SO2, give rise to a rather unique
atmospheric composition over Huabei (Li et al., 2007; Lin et al., 2009; Ma et al., 2010).

The IPAC-NC (Influence of Pollution on Aerosols and Cloud Microphysics in North
China) field measurement campaign was performed over Huabei during 2 April–16 May25

2006 with the goal to understand the chemical pollution characteristics and the poten-
tial impact on climate. IPAC-NC was the first intensive field campaign to simultaneously
address trace gases, aerosols and clouds by aircraft measurements over China. One
important finding was the widespread occurrence of haze-clouds characterized by very
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high concentrations of gaseous pollutants and aerosol particles mixed within low-level
stratiform clouds (Ma et al., 2010). IPAC-NC also revealed that oxidation reactions
associated with high OH play a central role in the formation and persistence of the
haze-clouds (Ma et al., 2010). Here we analyze the data with a focus on trace gases,
ozone photochemistry and the atmospheric oxidation capacity.5

2 IPAC-NC field experiment

2.1 Emissions and meteorology

The IPAC-NC campaign was performed in the larger Beijing, Tianjin, and Tangshan
area (called Jing-Jin-Tang in Chinese) with some flight tracks extending towards the
Bohai Gulf. The research area was strongly influenced by air pollution emissions and10

transport from major urban and industrial centers in the region of Huabei. Accord-
ing to an emission inventory for Huabei developed by our group (Zhao et al., 2011),
anthropogenic emissions in the core area, i.e., the Beijing Municipality, Tianjin Mu-
nicipality and Hebei Province (together forming Jing-Jin-Ji) in the year 2003 were:
2.06 Tg SO2, 1.58 Tg NOx (in equivalent NO2), 1.32 Tg VOC, 16.11 Tg CO, 1.19 Tg15

NH3, 2.65 Tg PM10, 1.40 Tg PM2.5, 0.11 Tg EC, and 0.25 Tg OC. Figure 1 presents the
spatial distributions of emission sources of primary air pollutants in Jing-Jin-Ji. The
large emission centers coincide with megacities (Beijing 39.92◦ N, 116.46◦ E and Tian-
jin 39.02◦ N, 117.02◦ E) and other large industrial cities (Tangshan 39.36◦ N, 118.11◦ E,
Shijiazhuang 38.02◦ N, 114.30◦ E). While Jing-Jin-Ji is one of the major industrial areas20

in China, Shanxi Province in West Huabei (not shown in the figure) is important for its
energy production, with large pollution sources (e.g., Taiyuan City 37.54◦ N, 112.33◦ E),
included in our database.

The IPAC-NC campaign was carried out in spring 2006. During this season warm
and humid southerly and southwesterly winds prevail in the planetary boundary layer,25

often invaded by northwesterly cold, dry air masses. Above the boundary layer,
westerly and northwesterly winds prevail. In addition to the synoptic weather systems,
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the circulation pattern is influenced by the pronounced topography in the north and
west of the Jing-Jin-Tang area (Xu et al., 2005; Chen et al., 2009). We added passive
pollution tracers into the regional meteorological forecast model GRAPES to simu-
late the transport of pollutants from the large cities Beijing, Tianjin, Tangshan, Shiji-
azhuang, and Taiyuan, respectively. The tracers were released from the five 0.3◦×0.3◦

5

model grids for each city in the lowest model layer. A constant tracer emission rate
of 300 Mg km−2 was used for all selected grid cells, comparable to the SO2 and NOx
emissions in these cities. Figure 2 shows the wind fields and spatial tracer distributions
over Jing-Jin-Tang and the surrounding areas during the campaign period. In addition
to the concentrated pollution hot spots near the ground, strongly enhanced tracer con-10

centrations are predicted at higher altitudes up to ∼3 km. The weak vertical winds and
horizontal convergence lead to the accumulation of pollutants, thus resulting in an “air
pollution pool” over the area.

2.2 Satellite data and model analysis

Satellite data of tropospheric NO2 vertical column densities (VCDs) have been widely15

used to identify pollution hot spots and emission changes worldwide, since NO2 has
a short lifetime (about one day) and the data retrieval products are relatively ro-
bust (Richter et al., 2005; Ma et al., 2006; Wang et al., 2007; Zhang et al., 2008b;
Lelieveld et al., 2009; Mijling et al., 2009; Yu et al., 2010). Ozone Monitoring In-
strument (OMI) satellite data of tropospheric NO2 VCDs, retrieved by KNMI/NASA20

at a resolution of 0.15◦ × 0.15◦ (Boersma et al., 2007), are available through the
internet (http://www.temis.nl). Figure 3a shows OMI tropospheric NO2 VCDs over
the central area of Huabei during IPAC-NC. Maximum NO2 VCDs are found to be
2×1016–3×1016 molecules cm−2 over the urban centers of Beijing and Shijiazhuang.
In the larger Jing-Jin-Tang and Shijiazhuang areas, the NO2 VCDs are higher than25

1×1016 molecules cm−2, comparable to the levels over some urban centers in other
regions of the world (Boersma et al., 2008), indicating widespread pollution over the
region.
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We calculated tropospheric NO2 vertical column densities using our regional chem-
ical transport model (RCTM) (Ma et al., 2002a) with an updated high-resolution
(10 km×10 km) emission inventory for the year 2003 developed by Zhao et al. (2011)
and the chemical lateral boundary conditions from the EMAC global model (Jöckel et
al., 2006); and the results are presented in Fig. 3b. The NO2 pollution hot spots of5

Beijing, Tianjin, Tangsan, and Shijiazhuang are clearly shown by both OMI and our
RCTM simulation. It is noted that there are some disagreements between the satellite
data and model results in the absolute NO2 column values. The reason may be un-
certainties both in satellite products and model simulations, the latter probably related
to emission uncertainties. To investigate this we performed a sensitivity simulation10

in which industrial NOx emissions were doubled throughout the domain. The results
from this simulation indicate a strong overestimation of the NO2 columns over urban
centers such as Beijing, while NO2 columns in the surrounding regions are still too
low. It thus appears that the major urban-industrial NOx sources are reasonably well
represented in our emission database. Rural emissions, on the other hand, possibly15

from small scale industrial and agricultural activities, i.e. more difficult to capture by
statistical datasets, are probably underestimated.

We also used a tracer-tagging method implemented in our RCTM, as described by
Ma et al. (2002c), to simulate transport and transformation of nitrogen compounds
originating from different emission sources. Figure 3c presents the percentage con-20

tributions of industrial, traffic, and other sources to tropospheric NO2 vertical column
densities in the central area of Huabei. The other sources refer to the emissions from
civil activities and biomass burning and the inflow from outside of the Huabei model
domain. Interestingly, the pollution characteristics in different areas of Huabei are quite
different. For example, the atmospheres over the Beijing and Shijiazhuang areas are25

influenced predominantly by traffic emissions (∼50–70 %) and the atmospheres over
Tianjin and Tangshan by industrial pollution (∼60–80 %). Note that this result may not
apply to urban air quality at the surface where traffic emissions generally dominate the
pollution sources.
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2.3 Measurement platforms and instruments

The principal measurement platforms of IPAC-NC included a twin-engine YUN-12 air-
craft operated from Tianjin International Airport and two ground stations, one located at
39.88◦ N, 116.47◦ E on the campus of the Beijing University of Technology (Beigongda
station), and the other at 39.73◦ N, 117.53◦ E in the Xin’an weather modification station5

of the Baodi County of Tianjin Municipality (Xin’an station, previously referred as Baodi
station by Ma et al., 2010). Beigongda is an urban site in the southeast of Beijing, about
1 km away (inside) from the East 4th Ring Road, and the instruments were located on
the roof of an 11-story building. Xin’an is a rural site in the center of Jing-Jin-Tang,
about 85 km, 70 km, and 105 km away from Beijing, Tianjin, and Tangshan, respec-10

tively, and the instruments were located on the roof of a single-story building. The
Xi’an site is surrounded by agricultural fields, about 1 km from the small town. Trace
gases (including SO2, NOx, CO, VOCs, and O3) and aerosols (mass and chemical
composition of PM2.5) were measured at the two stations. In addition, the particle size
distributions and the aerosol scattering coefficients as a function of relative humidity15

were measured at the Xin’an site (Pan et al., 2009; Ma et al., 2010).
Table 2 gives a summary of the instruments mounted on board the aircraft to mea-

sure trace gases, aerosols, clouds, and meteorological parameters (Wang et al., 2008;
Ma et al., 2010). A FEP-Teflon tube was used to introduce the ambient air from be-
low the fuselage into the aircraft cabin for gas analysis. O3 was measured by a UV-20

absorption analyzer (TECO Model 49, USA) with a response time of 20 s. Nitrogen
oxides were monitored by an O3-chemiluminescence NO-NOx analyzer (TECO Model
42C-Tl, USA) with a response time of 10 s. The reactive nitrogen species detected as
NOx with this analyzer probably include some NOy (e.g., nitric acid and organic nitrates)
and will be denoted as NOx

∗ following Hatakeyama et al. (2005). SO2 was monitored25

by a UV pulse fluorescence analyzer (TECO Model 43C-TL, USA) with a response
time of about 80 s. CO was monitored by a gas filter correlation analyzer (TECO Model
48C, USA) with a response time of about 1 s. All instruments were aligned with zero air
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before and after entering the sampling areas during every flight. Since the CO analyzer
on board the aircraft needed a relatively long period for stabilization during each flight,
only the second half of the CO data could be used for analyses. The chemistry instru-
ments on board the aircraft were turned on about 15 min after taking off and switched
off about 15 min before landing. VOCs sampling was done using 2–4 canisters each5

flight and were typically filled during 10–20 min per canister. After the flight, the sam-
plers were directly sent to the State Joint Key Laboratory of Environmental Simulation
and Pollution at Peking University for chemical analyses (Shao et al., 2009).

Ground and aircraft aerosol filter sampling as well as the chemical analyses were
conducted using the methods as described in previous studies (Pan et al., 2009; Ma10

et al., 2010). Condensation nuclei (CN) concentrations were measured at a frequency
of 1 Hz with a condensation particle counter (TSI-3020, USA) which detects submi-
crometer particles larger than 5 nm diameter. Ultrafine particle concentrations with
diameters of 5.6–560 nm were measured with an Engine Exhaust Particle Sizer Spec-
trometer (EEPS) model 3090 (TSI-3090, USA) at 1 Hz frequency. A diversion dome15

was mounted on the belly of the fuselage to introduce ambient air into the sampling
tubes and the sample air was introduced into the aircraft cabin through stainless steel
and conductive carbon tubes. The sampling flow rates were 2 l min−1 for CN and
10 l min−1 for the EEPS. Accumulation mode aerosols of 0.1–3.0 µm diameter were
measured with a Particle Cavity Aerosol Spectrometer Probe (PCASP-100X, PMS,20

USA), and cloud droplet number concentrations of 2–47 µm diameter were determined
using a Forward Scattering Spectrometer Probe (FSSP-100, PMS, USA). These two
PMS probes were installed externally on the belly of the aircraft to measure the particle
and droplet size distribution at ambient humidity. Temperature, relative humidity, and
geographical information (latitude, longitude, and altitude) were measured continuously25

with a thermometer (EMM-01), a dew-point hydrometer (DP3-D-SH, Tempcontrol, NL),
and a global positioning system (GPS, Global Water, USA). Detailed descriptions of
the instruments and aircraft sampling system can be found in Wang et al. (2008) and
Ma et al. (2010).
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2.4 Aircraft flight time and areas

Table 3 presents an overview of the flights performed in IPAC-NC. The aircraft trans-
ferred from the Changzhou city of Jiangsu Province in Southern China to the Tianjin
airport on 2 April 2006, and back to Changzhou on 16 May 2006. Most instruments
were on board during the transfer flights (TF), and thus the measurement data obtained5

over the Huabei region on these two days can also be used for this study. Seventeen
research flights (RF) were performed during the campaign, including eight under clear-
sky conditions (described as hazy for some days), eight under cloudy conditions, and
one during a dust storm (RF06). Several flight patterns were designed and imple-
mented based on a combination of research objectives, weather conditions, and air10

traffic control regulations. The flight altitude ranged up to 3500 m the cruising velocity
was generally ∼200 km h−1, and the flight duration was typically around 4–5 h. Fig-
ure 4 shows all flight tracks individually, and Fig. 5 presents their spatial coverage by
combining all research fight tracks in one overview. The aircraft measurements took
place over the Tianjin and Tangshan areas and the downwind region, located within15

the above described air pollution pool.

3 Results and discussion

Here we present our analytical results including statistics and model calculations based
on the data obtained during the campaign, focusing on the general chemical character-
istics over the region. Detailed episode analyses, e.g., the influence of local meteoro-20

logical conditions on the measurement results, will be presented in dedicated papers.
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3.1 Urban and regional pollution observed on the ground

Figure 6 shows average diurnal variations of trace gases measured at the Beigongda
(urban) and Xin’an (rural) stations. High concentrations of primary pollutants SO2,
NO, NO2, and CO were observed at both the urban and rural sites. The pollution
levels of SO2 and NOx were higher at the Beigongda site than at the Xin’an site while5

the levels of CO were similar (around 1–2 ppmv). CO has a lifetime of about 1–2
months, much longer than that of SO2 and NOx (about one day). Compared to traffic
and industrial activities, biomass burning produces relatively more CO than the other
pollutants like NOx due to inefficient combustion (Crutzen and Andreae, 1990), and
it is more widespread across the rural areas, contributing nearly 20 % to the annual10

total CO emission in Huabei (Zhao et al., 2011). Comparing the 90th percentiles of
CO at the two sites, it is expected that CO at Xin’an is more frequently affected by
plume episodes from industrial and biomass burning sources. During the campaign,
the Xin’an site was also influenced by air masses from the industrial areas of Tangshan,
Beijing, and Tianjin (Pan et al., 2009). Biomass burning might also lead to enhanced15

CO at the Xin’an site. Lin et al. (2008) observed an unexpected increase of CO at
Guocheng, a rural site 110 km southwest of Beijing in May, June, and October, and
argued that biomass burning is a major source of CO in the agricultural areas of the
region.

Diurnal cycle patterns of low-reactive primary pollutants are affected by both the20

source distribution and planetary boundary layer (PBL) dynamics. As shown in Fig. 6,
the NO, NO2, and CO at Beigongda and Xin’an stations had a similar diurnal pattern
with a maximum in the early morning and a minimum in the afternoon. These pollutants
have strong surface sources and tend to accumulate during nighttime when the PBL is
shallow while being more diluted during daytime when the PBL deepens. There was25

a sharp peak of NO in the early morning at the two sites, probably related to rush hour
emissions, subsequent PBL deepening and NO2 photolysis. Due to the reaction of NO
with O3, NOx exists mainly in the form of NO2 during nighttime.
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NO+O3 −→NO2+O2 . (R13)

NO can be produced rapidly by the photodissociation of NO2 in the early morning
at sunrise. In the afternoon, NO decreases due to the reaction with increasing O3
formed in the photochemical smog. Note that such an NO early morning peak was5

also observed in other rural and urban sites in China, e.g., at the Shangdianzi regional
background station of Huabei (Lin et al., 2008) and at an urban station in Shanghai
(Geng et al., 2008). Interestingly, the diurnal cycles of SO2 at Beigongda and Xin’an
stations were similar, with higher concentrations appearing during daytime, in contrast
to NO, NO2 and CO. This was also observed at the Gucheng and Shangdianzi sites in10

Huabei (Lin et al., 2008, 2009). Different from other primary pollutants (NO, NO2 and
CO), the emissions of SO2 are dominated by coal burning in industrial activities, which
contributes nearly 90 % of the total SO2 emission in Huabei (Zhao et al., 2011). The
plume rise by some stacks, especially of power plants, can be high enough to release
the pollutants well above the stable PBL height at night. During daytime, an increase15

in the mixing layer brings overhead plumes to the ground, thus enhancing the SO2
concentrations as observed at these stations. A layer of enhanced SO2 at altitudes of
around 500 m was observed by aircraft in IPAC-NC as presented below (see Sect. 3.3).

The diurnal cycles of secondary pollutants are mainly controlled by photochemical
processes. As shown in Fig. 6, the daily O3 variation at Beigongda and Xin’an stations20

are typical for photochemical pollution. Hourly mean O3 concentrations at the two sites
were similar, with maximum values around 65 ppbv in the afternoon. These values are
more than 10 ppbv higher than the maximum hourly mean O3 concentrations observed
at Xianghe, a rural site between Beigongda and Xin’an stations, in March 2005 (Li et
al., 2007). In the afternoon, the O3 variability was larger at Beigongda than at Xin’an,25

indicating greater source dynamics and photochemistry in the urban atmosphere. The
chemical cycle of NO, NO2 and O3 during sunlight is very rapid (1–2 min), and thus part
of the O3 formed via the reaction of NO with HO2 and RO2 can exist in the form of NO2
when NO levels are very high. Therefore, total oxidant (Ox ≡O3+NO2) has often been
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used to characterize photochemical O3 production especially in the urban and subur-
ban areas (e.g., Lu et al., 2010). Figure 6 shows that the observed Ox concentrations at
Beigongda were higher than they were at Xin’an (93 ppbv vs. 83 ppbv maximum mixing
ratios), and their variability was smaller compared to O3 at Beigongda. The difference
between the maximum and minimum hourly mean O3 concentration at the two sites5

was nearly the same (50–51 ppbv). However, the difference between the maximum
and minimum hourly mean Ox concentration was smaller in Beigongda (31 ppbv) than
in Xin’an (39 ppbv), both much lower than the O3 difference at the two sites. Scatter
plots of measurement data show that observed O3 and NO2 were anti-correlated at the
Beigongda and Xin’an stations (not shown). This indicates that O3 production at the10

two sites might be generally NOx-saturated and was limited more strongly by a rela-
tively low OH recycling efficiency with increasing NO2 at the urban site compared to the
rural site. Note that the observed NO2 concentration at the Beigongda site was about
1.6 times higher than at Xin’an, and that the NO2/NO ratio around noon was about 4.5
at Beigongda and 3.5 at Xin’an.15

During the IPAC-NC campaign air samples were obtained at the Beigongda and
Xin’an stations for non-methane hydrocarbon (NMHC) analyses (Cheng and Wang,
2010). Figure 7 presents the concentrations of NMHCs including alkanes, alkenes and
aromatics at different local standard time (Beijing Time) as measured at the Beigongda
and Xin’an stations. The average mixing ratio of NMHCs was 118±48 ppbv at the ur-20

ban site and 55±46 ppbv at the rural site, and their diel variations were not significant.
These NMHC levels were much higher than measured in Beijing and the surrounding
area as reported by Shao et al. (2009) for the summer period. Aromatics contributed
strongly to the total NMHC at both the urban (55 %) and rural (58 %) sites, followed
by alkanes with a contribution of 27 % (urban) and 35 % (rural), respectively. The pri-25

mary species in the aromatics included toluene, benzene and xylene. The ratio of
toluene/benzene (t/b) is an important index for identifying the source contribution by
automobile exhausts to the NMHCs (Zhang et al., 2008a; Geng et al., 2008; Yuan et
al., 2009). Based on measurements made during IPAC-NC, the t/b ratio was 1.22 at
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the Beigongda site and 0.95 at the Xin’an site. The detection probability was 100 %
for both toluene and benzene at Beigongda, and at Xin’an it was 34 % for toluene and
74 % for benzene, respectively. These values indicate that the NMHCs at the urban site
came mainly from automobile exhausts while they had important additional sources at
the rural site.5

3.2 Widespread air pollution in the lower atmosphere

Figure 8 shows the spatial distributions of major gaseous air pollutants measured by
aircraft below 1.5 km altitude (representative of the PBL during daytime) and above
1.5 km (representative of the lower FT). Widespread high SO2 mixing ratios were ob-
served, typically of 20–40 ppbv below 1.5 km and 10–30 ppbv aloft. Over the highly pol-10

luted area near Tianjin, SO2 even reached up to 60–100 ppbv in the PBL, much higher
than at the surface in Xin’an (Fig. 6). These high SO2 levels indicate widespread,
strong and elevated industrial emission sources across the region. The SO2 levels
observed in this study are a few times higher than those measured over Northeastern
China in April 2005 and an order of magnitude higher than those over the Northeast-15

ern United States (Dickerson et al., 2007). Contrary to SO2, CO in the PBL was lower
aloft than at the surface, indicating other CO sources rather than the elevated industrial
stacks. Nevertheless, high CO mixing ratios around 1 ppmv were also observed within
the pollution pool during some flights. Note that the CO data are not as complete as
for the other trace gases due to an instrument problem as described above (Sect. 2.3).20

NO was typically a few ppbv during all flights below and above 1.5 km altitude. As
shown in Fig. 8, relatively low NO (<1 ppbv) was observed along the circular flight path
of RF01 over a rural area in Tianjin (near the Xin’an station) on 9 April 2006 (see Table 2
and Fig. 4 for flight information). Higher NO mixing ratios (1–2 ppbv) were observed
during another circular flight, RF06, over the Bohai Gulf on 17 April 2006. Heavy25

cloudy conditions were encountered on 9 April 2006, with both cloud fraction and the
liquid water content being highest during the campaign (Ma et al., 2010). A severe
dust storm episode was observed on 17 April 2006 (Wang et al., 2008). The combined
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cloud and dust conditions resulted in a remarkably strong decrease in the photolysis
rate of NO2 and thus a lower NO/NO2 ratio in the PBL.

Although the aircraft NOx
∗ measurements are likely to include some nitric acid and

organic nitrates, it may be used as an indicator of the NOx pollution level over the re-
gion investigated during IPAC-NC. The NOx

∗ levels during the campaign were generally5

10–20 ppbv below 1.5 km altitude and 2–10 ppbv aloft. Similar to SO2 and CO, highest
NOx

∗ concentrations were observed in the highly polluted area, with maximum mixing
ratios up to 30–50 ppbv. These high NOx

∗ levels corroborate the existence of the pol-
lution pool in the lower atmosphere. With respect to pollution levels over the Bohai
Gulf, the SO2 and NOx concentrations observed in this study are comparable to those10

observed in March 2002 by Hatakeyama et al. (2005). The emission rates of these
pollutants in the Huabei region may nevertheless have increased strongly from 2002 to
2006 (Zhang et al., 2009b). Since the number of flights was rather small over the Bohai
Gulf in both campaigns, the measurement data set does not suffice to derive emission
trends. Although the observed O3 is expected to have been primarily produced from15

the photochemical oxidation of CO and VOCs catalyzed by NOx, during spring strato-
spheric intrusions may contribute to tropospheric ozone (Hocking et al., 2007). The
mixing ratios of O3 were typically 30–50 ppbv during the campaign. The highest O3
mixing ratios of 60–70 ppbv were observed in the severely polluted area.

3.3 Vertical profiles20

Figure 9 presents the vertical profiles of trace gases measured during IPAC-NC. Al-
though strongly enhanced concentrations were found in a few plumes, the pollutants
were typically more homogeneously distributed with increasing altitude. A decreasing
tendency of NO, NOx

∗ and CO with increasing altitude is evident. The vertical profile
of SO2 shows a maximum at ∼0.5 km altitude, owing to the predominantly elevated25

emissions from large industrial sources. Together with the diurnal variation of the PBL
a distinct temporal pattern of SO2 is apparent near the surface, as described above
(Sect. 3.1) and in previous studies (Lin et al., 2008, 2009). Due to weaker titration and
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the active photochemistry, relatively high O3 concentrations may occur near the top of
the mixing layer (∼100 m above the surface). However, such O3 peaks could not be
observed during IPAC-NC since our aircraft was not allowed to fly below 400 m above
the ground. The O3 mixing ratios were generally higher near the surface compared to
higher altitudes within the PBL. These vertical profiles are similar to the tropospheric5

ozone climatology over Beijing as observed in the MOZAIC program (Ding et al., 2008).
A remarkable O3 increase at an altitude of 0.5–1.5 km was observed over Beijing dur-
ing the summer afternoon (Ding et al., (2008). An elevated pollution layer was also ob-
served over Beijing at 2500–3500 m altitude during summer, attributed to a mountain
chimney effect (Chen et al., 2009). The increases in O3 and other pollutants at these al-10

titudes were generally not significant over the Tianjin, Tangshan and Bohai area during
the spring IPAC-NC campaign although some episodic enhancements were observed.
Note that our aircraft may have missed such profiles since the chemistry instruments
were switched off during take-off and landing at Tianjin airport. A summary of daytime
meteorological parameters and trace gas concentrations, including NMHCs, observed15

during IPAC-NC is given in Table 3. The data obtained at the Xin’an site are assumed
to be representative for the region at the surface.

3.4 Estimated radical concentrations

We calculated radical concentrations and chemical reaction rates with a chemical box
model based on the NCAR Master Mechanism (Madronich and Calvert, 1989, 1990;20

Ma et al., 2002b), constrained by the observed mean trace gas concentrations shown
in Fig. 9 as well as in Table 3. Eight altitude levels, 0.0 km, 0.4 km, 0.8 km, 1.2 km,
1.6 km, 2.0 km, 2.4 km and 2.8 km, were selected for the calculations. During each
simulation, specified physical and chemical parameters such as temperature and the
mixing ratios of relatively long-lived species such as H2O, CH4, H2, SO2, NO, NO2,25

CO, O3 and NMHCs, were kept constant. The concentrations of NO2 were derived
by scaling measured NO with the NO2/NO ratios derived from our RCTM (Ma et al.,
2002a). The observed individual NMHC species in the field experiment were applied
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as described by Ma et al. (2002b). The concentrations of CH2O, CH3OOH and H2O2
were not measured during our field experiment, and their values were taken from mea-
surements taken in other studies. For example, the initial CH2O concentration was
assumed 5 ppbv at the surface, increasing to 1.5 ppbv at 1.6 km altitude (Russo et al.,
2003; Shao et al., 2009). Photodissociation rate coefficients (J-values) were calcu-5

lated with the radiation transfer model TUV (Madronich, 1987), and the daytime mean
J-values for 15 April 2006 were used for model simulations at the selected altitudes.
Clear sky conditions were adopted, and the mean vertical profiles of aerosol optical
properties, based on our aircraft measurements (Ma et al., 2010), were used in the
J-value calculations.10

We took into account heterogeneous reactions of trace gases and radicals on
aerosol surfaces in the model simulations:

OH aerosols−→ products (R14)

HO2
aerosols−→ products (R15)

Figure 10 shows the mean distributions of aerosol number concentrations and particle
surface areas as a function of altitude, used in the calculations of photolysis rates
and heterogeneous reactions (Ma et al., 2010). It was demonstrated that the number
concentrations of aerosol particles were dominated by the nucleation mode and lower
Aiken mode (5nm<Dp <100nm) at higher altitudes (>∼1.5 km) and by the Aiken mode15

and lower accumulation mode (20nm < Dp < 200nm) at lower altitudes (<∼1.5 km).
Correspondingly, the aerosol surface areas were dominated by the accumulation mode
with a peak centered at Dp ≈ 200 nm and to a lesser extent by the coarse mode with
a peak centered at Dp ≈ 1.5 µm, the latter being related to dust aerosols. The total

number density of aerosols was about 1.4×104 particles cm−3 near the surface, and20

1.7×104 and 3.0×104 particles cm−3 at 1 and 2 km altitudes, respectively. The surface
area concentration of aerosols was about 3.8×102 µm2 cm−3 near the surface, and
2.4×102 and 1.3×102 µm2 cm−3 at 1 and 2 km altitude, respectively.
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We adopted the same values of uptake coefficients as used by Zhu et al. (2010) for
the calculation of heterogeneous reaction rates.

kγ =
∫ [

1+ Kn

1+0.377 Kn+1.33 Kn · (1+ Kn)/γ

]
·4π ·Dv ·r ·N ·dr (1)

where ky is the pseudo first-order rate coefficient (s−1), Kn is the Knudsen number
(the ratio of mean free path of condensing vapor molecules to particle radius), γ is the5

uptake coefficient of a species, Dv is the diffusion coefficient of the condensing vapor
(cm2 s−1), r and N represent the particle radius (cm) and number concentration (cm−3)
with a radius between r and r +dr . All organic carbonyls, alcohols and peroxides,
and acids in the model are assumed to have the same reactive uptake coefficients as
CH2O, CH3OOH and CH3COOH, respectively. The chemical rate equations were in-10

tegrated forward with a Gear-type solver. Simulations were performed for 12 h and the
results of the last hour are analyzed in this study. Since most long-lived species were
fixed, the concentrations of radicals and other organic products could attain a steady
state during the last few hours with changes less than 1 %. We considered three sce-
narios in the model simulations. BASE refers to the standard simulation, and NO S15

and NO H are sensitivity simulations without considering SO2 associated reactions
and heterogeneous reactions of OH and HO2 on aerosol surfaces, respectively.

Figure 11a and b presents the calculated vertical profiles of OH and HO2 con-
centrations, respectively. Interestingly, we find a peak in the vertical profiles of
both OH and HO2 at about 1 km altitude. From the base run, the OH concen-20

tration is calculated to be 5.4× 106 molecules cm−3 (∼0.22 pptv) at the surface, in-
creasing to 6.9×106 molecules cm−3 (∼0.29 pptv) at 0.8 km altitude, and dropping to
4.7× 106 molecules cm−3 (∼0.22 pptv) and 3.8× 106 molecules cm−3 (∼0.19 pptv) at
1.6 km and 2.4 km, respectively. The profile of HO2 is similar to that of OH, with
a maximum of 1.8×108 molecules cm−3 (∼7.6 pptv) at 0.8 km. The surface level of25

OH in the polluted rural area of Huabei estimated in this study is comparable to that
in the Mexico City Metropolitan Area (MCMA) and higher than that in New York City
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(NYC). According to the measurements by Ren et al. (2003) and Shirley et al. (2006),
the diurnal peak of median OH was 0.28 pptv at NYC in July 2001 and 0.35 pptv
(∼7×106 molecules cm−3) at MCMA in April 2003. A high average OH concentration
of 15×106 molecules cm−3 around noon was observed in the polluted rural area of the
Pearl River Delta (PRD) in China during July 2006, and this could not be reproduced5

by the model calculations of Hofzumahaus et al. (2009). Our OH estimate for Huabei is
much lower than observed in the PRD, but it is comparable to the OH simulated for PRD
(the latter with a diurnal peak of ∼7×106 molecules cm−3). Unaccounted OH recycling
remains to be a challenge, and it is conceivable that our model also underestimates
OH (Lelieveld et al., 2008; Hofzumahaus et al., 2009).10

Measurements of OH vertical profiles are sparse compared to ground-based obser-
vations. As reviewed by Singh et al. (2009), INTEX-B provided detailed vertical distri-
butions of OH measured over the Gulf of Mexico and the subtropical Pacific in spring
2006, during the same season as the IPAC-NC campaign. OH levels in the lower at-
mosphere estimated for Huabei are similar to those over the Gulf of Mexico and 2–315

times higher than those over the subtropical Pacific. The mean vertical profile of OH,
derived for Huabei, is also similar to that over the Gulf of Mexico, the latter having
a peak around ∼0.3 pptv at an altitude of 3–4 km a.s.l., as shown by Singh et al. (2009)
(note that MCMA is at an altitude of 2240 m a.s.l.). A similar OH profile was observed
over the Suriname rainforest during the GABRIEL campaign, with a peak concentra-20

tion at 2–3 km altitude (Lelieveld et al., 2008; Kubistin et al., 2010). The transport and
evolution of Asian pollution over the Pacific have been thought to have a substantial im-
pact on surface air quality along the west coast of North America (Zhang et al., 2008b;
Singh et al., 2009). Higher OH concentrations in the lower atmosphere over Huabei,
one of the most severely polluted regions in Asia, compared to those over the Pacific25

indicate that primary pollutants are efficiently oxidized before being transported across
the Pacific to North America. Huabei is not only a highly polluted region but also acts
as an oxidation pool over China.
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3.5 HOx radical budget and relevant chemical reactions

An overview of the most relevant reactions for the HOx budget over the polluted region
of Huabei is given in Tables 4 and 5. The photolysis of ozone followed by reaction with
water vapor, together called the effective photolysis of ozone (Ma and Weele, 2000;
Ma et al., 2002b), is the main source of tropospheric OH on a global scale (Rohrer and5

Berresheim, 2006; Lelieveld et al., 2002b). In contrast, in the lower atmosphere over
Huabei this primary OH production merely contributes 6–7 % to the total production of
OH. The OH radical recycling by reaction NO+HO2 makes a dominant contribution
(90±3%) to the total production. At the surface, the contribution of HNO2 photolysis
(2.4 %) is comparable to that of ozone photolysis (1.6 %), in accord with previous results10

for polluted areas (Volkamer et al., 2010 and references therein). In addition to gas-
phase chemistry, heterogeneous reactions on aerosol surfaces and the release from
soil nitrate have been suggested as important sources of HNO2 (Ammann et al., 1998;
Stemmler et al., 2006; Su et al., 2008, 2011; An et al., 2009), though not included in
our model. The contributions of other reactions, including the photolysis of H2O2, are15

much less (∼1 %).
Our model analysis suggests that the loss of OH over the polluted region of Huabei

is dominated by the reaction with CO (15–33 %), followed by the reaction with NO2
(14–21 %). Interestingly, we find that the reaction with SO2 also makes a substantial
contribution (15–16 %) to the OH loss in the lower atmosphere, i.e. well above the
ground, owing to high levels of SO2 over the region.

SO2+OH+M −→ HOSO2+M,

HOSO2+O2 −→ HO2+SO3 ,

SO3+H2O+M −→ H2SO4+M,

SO2+OH+H2O
O2−→ HO2+H2SO4 . (R16)
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Due to its short lifetime (τOH < 0.1 s), OH rapidly reaches a steady state between pro-
duction and loss.
d [OH]
dt

=P(OH)−kOH · [OH]≈0. (2)

The pseudo first-order rate coefficient of OH (kOH), i.e., the inverse of the atmospheric
OH lifetime (τ−1

OH), is an important parameter that has been used to measure the total5

OH reactivity in the atmosphere (e.g., Mao et al., 2009; Sheehy et al., 2010; Sinha et
al., 2010; Lou et al., 2010).

kOH =
∑

i

kOH+Xi
· [Xi]=τ

−1
OH

, (3)

where [Xi] is the concentration of a reactive species (CO, NO2, SO2, VOCs etc.) in
ambient air, kOH+Xi

represents the corresponding bimolecular reaction rate constant,10

and kOH+Xi
· [Xi] stands for the reactivity of Xi. kOH values were observed between 1 s−1

in clean air and 200 s−1 in heavily polluted air in the atmospheric boundary layer (Lou
et al., 2010, and references therein). The daytime average OH reactivity during IPAC-
NC is estimated to be 44 s−1 on the ground, and 12, 8 and 6 s−1 at altitudes of 0.8, 1.6
and 2.4 km, respectively. The OH reactivity over Huabei estimated in this study is much15

higher than that in the lower atmosphere over the Pacific, where a median kOH value
of 4.0±1.0 s−1 was measured by aircraft during INTEX-B (Mao et al., 2009). Note that
the total OH reactivity generally varies during the day (Sheehy et al., 2010; Lou et al.,
2010). For example, surface kOH in the PRD was observed to have a mean maximum
value of 50 s−1 at daybreak and a mean minimum value of 20 s−1 at noon (Lou et al.,20

2010). About 35–45 % of the total OH reactivity in IPAC-NC appears to come from
reactions with VOCs. In contrast, previous studies indicated that the OH reactivity in
polluted areas was dominated by organic compounds, e.g., 70 % in MCMA (Shirley et
al., 2006) and 85 % in the PRD (Lou et al., 2010).

The main source of HO2 over the polluted region of Huabei is the reaction of OH with25

CO (17–34 %). In the upper part of the PBL and the lower FT, the contribution from
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photolysis of CH2O (9–15 %) is also considerable. Again, we find that the reaction of
OH with SO2 makes a substantial contribution (16–18 %) to the HO2 production in the
upper part of the PBL and the lower FT. To our knowledge, such efficient recycling
between OH and HO2 by SO2-involved reactions was not found in previous studies.
Kanaya et al. (2009) reported a much smaller (3 %) contribution of reaction SO2 +5

OH to the HO2 production over East China during the Mount Tai Experiment 2006.
During IPAC-NC, the oxidation of VOCs contributes ∼75 % to the HO2 production near
the surface and 50–65 % in the upper part of the PBL and the lower FT. The loss of
HO2 over Huabei is mainly controlled by the reaction of HO2 with NO (>94 %), which
recycles OH very efficiently as described above.10

Note that we take into account heterogeneous reactions of radicals including OH
and HO2 on aerosol surfaces in our model simulations. The calculated pseudo first-
order rate coefficients for the removal of HO2 by aerosol particles are 0.025 s−1 at the
surface and 0.018, 0.010 and 0.006 s−1 at altitudes of 0.8, 1.6 and 2.4 km, respectively.
Correspondingly, the concentrations of HO2 decrease by 8 % at the surface and by15

22 %, 9 % and 6 % when heterogeneous reactions of radicals are included (BASE)
compared to the model runs in which they were not included (NO H), and the relative
decreases of OH concentrations are similar. Kanaya et al. (2009) reported a larger
effect of heterogeneous reactions on HOx radicals over East China during the Mount
Tai Experiment in June 2006, with the daytime maximum concentrations decreasing by20

26 % (from 5.0×106 to 3.7×106 molecules cm−3) for OH and 41 % (from 34 to 20 pptv)
for HO2, respectively. They adopted a central value of the uptake coefficient of 0.25±
0.09 (n= 10), measured in their laboratory, and estimated particle size distributions
with observed mass concentrations of chemical species in 9 size bins between 0.43–
9 µm. Kanaya et al. (2009) estimated a typical surface area concentration of 6.3×25

102 µm2 cm−3, much higher than our measurements during IPAC-NC, and a median
pseudo first-order rate coefficient of 0.014 s−1 for the removal of HO2, comparable to
our estimate at about 1 km altitude.
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Regardless of the uptake coefficients and aerosol particle size distributions em-
ployed, the loss efficiency of HO2 is ultimately determined by the calculated pseudo
first-order rate coefficient. With similar values of the pseudo first-order rate coefficients
(e.g., about 0.015 s−1 at 1 km altitude over Huabei), the smaller effect of heteroge-
neous reactions on HO2 concentration estimated in this study (∼20 %) than by Kanaya5

et al. (2009) may be related to the difference in the treatment of intermediate VOC ox-
idation products between the two models. The chemical box model used by Kanaya
et al. (2009) was based on the Regional Atmospheric Chemistry Mechanism (RACM)
(Stockwell et al., 1997). RACM is a condensed mechanism, with a much smaller num-
ber of the intermediate VOC oxidation products (e.g., HCHO and lumped species ALD,10

KET and MACR) than the NCAR Master Mechanism. The more complex intermedi-
ate VOC oxidation products were prescribed in their model simulations and kept con-
stant from the reference to the sensitivity simulations (Kanaya et al., 2009). In our
model simulations, all (a few hundred) intermediate VOC oxidation products, except
for HCHO and CH3OH, were simulated to attain steady state between production and15

loss, the latter also including heterogeneous reactions of these compounds. Compared
to the standard simulations (BASE), the sensitivity simulations without heterogeneous
reactions of OH and HO2 (NO H) attained a new steady state with different concen-
trations of the intermediate VOC oxidation products. For example, the mixing ratio of
CH3COCHO at 0.8 km altitude was 0.45 ppbv in BASE and 0.54 ppbv in NO H, respec-20

tively. Such differences in the intermediate VOC oxidation products can reduce the
changes in simulated OH and HO2 relative to the simulations with fixed concentrations.

De Reus et al. (2005) investigated the effect of heterogeneous removal of HO2 on
Saharan dust particles on the ROx (HO2 +RO2) mixing ratio applying an uptake co-
efficient of 0.2, the same as used in this study. They focused on relatively long-lived25

trace gases with the initial conditions from measurements and showed that heteroge-
neous removal of HO2 causes only a small decrease in ROx, with the calc/obs ratio of
ROx decreasing from 1.38 in the run without heterogeneous removal reactions to 1.30
in the run with heterogeneous removal of HO2 (de Reus et al., 2005). In addition to
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the direct heterogeneous loss rate, the changes in OH and HO2 reflect other chemical
characteristics. As presented above, we estimated a smaller decrease in OH and HO2
at the surface (8 %) compared to 0.8 km altitude (22 %), with a higher first-order rate
coefficient for the removal of HO2 at the surface (0.025 s−1) than at 0.8 km (0.018 s−1).
This suggests that the atmosphere over Huabei had a stronger capacity to buffer the5

perturbations on HOx near the surface than in the upper part of the PBL, most probably
due to higher VOC concentrations.

The reasons for the relatively high HOx radical levels in the lower atmosphere over
Huabei are intricate. It appears that the effective photolysis of ozone combined with
the reactions of OH with NO2, CO and SO2 play an important role. First, the effective10

photolysis of ozone (determined by the reaction H2O+O(1D)), which acts as a primary
source of HOx, has a maximum at 0.8 km altitude. The reaction rates of H2O+O(1D)
are calculated to be 3.7×106 molecules cm−3 s−1 at the surface, and 4.6×106, 2.7×106

and 1.5×106 molecules cm−3 s−1 at altitudes of 0.8, 1.6 and 2.4 km, respectively. Sec-
ond, with respect to the fractional contribution to the OH loss rate, the reaction CO+OH15

(which recycles HO2) has a maximum (33 %) and the reaction NO2+OH (which acts as
a primary sink of HOx) has a minimum (14 %) at 0.8 km. Third, the relative importance
of other species, such as CH2O and SO2, also changes with altitude. The reaction
rate of SO2 +OH is calculated to be 6.7×106 molecules cm−3 s−1 at the surface, and
1.3×107, 5.8×106 and 3.4×106 molecules cm−3 s−1 at altitudes of 0.8, 1.6 and 2.4 km,20

respectively, with a maximum at 0.8 km. CO and SO2 also compete with NO2 to react
with OH, recycling HO2 without a loss of total HOx. VOC oxidation can play an impor-
tant role in recycling OH, sustaining the atmospheric oxidation capacity and amplifying
trace gas removal in the troposphere (Lelieveld et al., 2008; Hofzumahaus et al., 2009).
The effects of VOC oxidation on the HOx budget deserve scrutiny and will be detailed25

in future work, for example to study the role of aromatics in HOx recycling.
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3.6 Ozone and secondary aerosol formation

Figure 11c presents the vertical profile of net ozone production over the polluted region
of Huabei calculated with the NCAR Master Mechanism. Table 6 presents an overview
of the most relevant reactions for the ozone budget. As previous studies (e.g., Liu et
al., 1987; Ma et al., 2002b; Lu et al., 2010), the total oxidant (Ox ≡O3+NO2) is used to5

infer instantaneous photochemical production, P(O3), and loss, L(O3), of ozone.

P(O3) = k7 · [HO2] · [NO]+
∑

k6 · [RO2] · [NO]. (4)

L(O3) = k1 · [O(1D)] · [H2O]+k9 · [HO2] · [O3]+k10 · [OH] · [O3]

+
∑

k11 · [alkene] · [O3]+k12 · [NO2] · [OH]. (5)

P(O3) in the lower atmosphere over Huabei is calculated to be 48 ppbv h−1 at the sur-10

face, and 16, 8 and 5 ppbv h−1 at altitudes of 0.8, 1.6 and 2.4 km, respectively. The
recycling of OH through the reaction of HO2 with NO and the associated photolysis of
NO2 is the main process (65–74 %) leading to ozone formation, followed by the reac-
tion of CH3O2 with NO (∼6 %). L(O3) is calculated to be 9 ppbv h−1 at the surface, and
3, 2 and 1 ppbv h−1 at altitudes of 0.8, 1.6 and 2.4 km, respectively. The reaction of15

NO2 with OH is the dominant ozone loss process (62–70 %). At the surface ∼16 % of
O3 loss is attributed to its reaction with 2-butene. At higher altitudes, the effective pho-
tolysis of O3 becomes more important, contributing 11–13 % to L(O3). It is estimated
that 8–15 % of the O3 loss is due to its reaction on aerosol surfaces.

The calculated near-surface rate of P(O3) during IPAC-NC is comparable to the20

maximum P(O3) (50 ppbv h−1) at a suburban location near Beijing reported by Lu et
al. (2010). Our P(O3) and P(O3)-L(O3) rates at higher altitudes (e.g., 9.3–5.3 and 7.4–
4.0 ppbv h−1 at 1.6–2.4 km in the case of NO HR) are comparable to the daytime 6-h
average P(O3) and P(O3)-L(O3) values (7.9 and 6.4 ppbv h−1) over East China during
the Mount Tai Experiment 2006 (Kanaya et al., 2009). Kanaya et al. (2009) showed25

that the heterogeneous loss of HO2 on aerosols reduced the daytime 6-h average net
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ozone production rate, P(O3)-L(O3), by 2.1 ppbv h−1 (from 6.4 ppbv h−1). Our model
sensitivity runs show a smaller effect with P(O3)-L(O3) decreasing to 6.7 ppbv h−1 from
7.4 ppbv h−1 (by 0.7 ppbv h−1) at 1.6 km altitude. Our results suggest that the net ozone
production in the lower atmosphere over Huabei during IPAC-NC (e.g., 16 ppbv h−1 at
0.8 km) is much higher than the average of >5 ppbv d−1 (at 800 hPa) over the polluted5

part of the Asian continent during INTEX-B as simulated with a global model by Zhang
et al. (2008b).

At high NOx levels, e.g., over the polluted Huabei region, the photochemical ozone
buildup is limited by radical formation and thus by the oxidation of CO and VOCs. As
discussed above, P(O3) in the lower atmosphere over Huabei is dominated by the10

reaction of HO2 with NO (by 65–74 %), and the production of HO2 is dominated by
the reaction of CO with OH (17–34 %). Therefore, we estimate that the oxidation of
CO makes contributions to P(O3) of 14 % (∼6.7 ppbv h−1) at the surface, and 25 %
(∼3.8 ppbv h−1), 13 % (∼1.1 ppbv h−1) and 12 % (∼0.6 ppbv h−1) at altitudes of 0.8, 1.6
and 2.4 km, respectively. The contribution of the reaction NO+HO2 to P(O3) is greatest15

(74 %) at 0.8 km, where the reaction SO2+OH adds 17 % to the HO2 production. This
indicates that the oxidation of SO2 remarkably augments ozone formation (up to ∼13 %
or 2.0 ppbv h−1 at 0.8 km) in the lower atmosphere over Huabei. The oxidation of VOCs
contributes most strongly to P(O3) near the surface, ∼85 %, of which ∼50 % through the
reaction HO2+NO and ∼35 % through RO2+NO. At higher altitudes the contribution20

of VOCs to P(O3) is 60–75 %, of which about 35–45 % through HO2+NO and 25–30 %
through RO2+NO.

In the highly active oxidative atmospheric environment over Huabei primary gaseous
pollutants such as SO2, NO2 and VOCs are efficiently converted into less volatile
species such as sulfuric, nitric and organic acids that can partition into the condensed25

phase. It has been shown previously that high OH levels can substantially affect con-
densation rates onto aerosol particles (Robinson et al., 2007; Ma et al., 2010). We
used the chemical box model, constrained by the measurements, to compute the for-
mation of condensable intermediate and terminal oxidation products such as organic
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acids from the oxidation of VOCs. The concentrations of these species were calculated
by assuming steady state between their chemical production and loss. Since we do not
account for gas-particle partitioning as a function of aerosol composition and ambient
conditions (Farina et al., 2010), these production rates represent upper limits of the
rates of condensation (called condensation potential).5

Figure 12 presents the vertical distributions of sulfuric acid and VOC oxidation prod-
ucts and their condensation potentials onto aerosol surfaces over the polluted region
of Huabei during IPAC-NC. The several hundred VOC oxidation products have been
subdivided into functional groups including organic peroxides, organic nitrates, organic
carbonyls, organic acids, and the total of organic reaction products (the sum of these10

individual groups). The condensation potential of sulfuric acid is estimated to be 2–
8 µg cm−3 h−1, with a peak value at an altitude of 0.8 km. Considering the low volatility
of sulfuric acid, this potential approximates the actual condensation rate. During IPAC-
NC, the average mass concentrations of sulfate and organic aerosols (OA) in PM10

measured by aircraft were 9 and 10 µg cm−3, respectively (Ma et al., 2010). This indi-15

cates that it takes a few hours for the gas-phase chemical transformation mechanisms
to produce the amount of sulfate in aerosols sampled during IPAC-NC.

The relative contribution of primary organic aerosols (POA) and secondary organic
aerosols (SOA) to the overall OA budget is to some degree controversial, and recent
studies have highlighted the importance of intermediate-volatile SOA (typically with20

12 < C < 21) (Robinson et al., 2007; de Gouw et al., 2011). As shown in Fig. 12,
the condensation potential of total organics is much lower than that of sulfuric acid,
with a maximum value of ∼0.5 µg cm−3 h−1 at the surface. Based on these formation
rates, we estimate that during IPAC-NC the SOA formed from the gas phase chemical
transformation of VOCs on preexisting particles (e.g., dust) was 1 and 5 µg cm−3 during25

periods of 1 and 10 h, respectively. Recall that the calculated condensation potential
provides an upper bound. Due to limitations in both the VOC sample analyses and the
model chemical mechanism, we did not consider the oxidation of organic compounds
with C > 9, which tend to have a relatively low volatility (de Gouw et al., 2011). In
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view of the measured ∼10 µg cm−3 of OA in PM10, it seems that substantial additional
oxidation of VOCs than accounted for here, including reactions with C> 9, contributed
to SOA formation during IPAC-NC. Furthermore, directly emitted OA, e.g. from biomass
burning, may have contributed substantially as well.

4 Summary and conclusions5

Recently, regional air pollution, characterized by photochemical smog and grey haze-
fog, has become a severe environmental problem in China. We have analyzed the
chemical properties of air pollution over the Huabei region in Eastern China, using the
measurement data obtained during the IPAC-NC campaign in spring 2006. Huabei
includes two megacities, i.e., Beijing and Tianjin, and several large industrial areas,10

e.g., Tangshan, Shijiazhuang and Taiyuan. High pollution emissions, together with the
meteorological conditions that favor local convergence, result in the accumulation of
pollutants in the lower atmosphere over the core area of Huabei. In addition to high
concentrations of gaseous pollutants and haze particles, we deduce high levels of HOx
radicals and active photochemistry in the lower atmosphere over the region, leading15

to the efficient formation of ozone and secondary aerosols. The results thus indicate
that the lower atmosphere over Huabei is not only highly polluted but also acts as an
oxidation pool over this part of China.

During IPAC-NC, daytime mean near-surface concentrations and standard devi-
ations of the primary gaseous pollutants SO2, NO, NOx, CO, and NMHCs were20

24.7±20.9 ppbv, 8.4±15.6 ppbv, 29.4±23.1 ppbv, 1.5±1.0 ppmv, and 55.1±45.7 ppbv,
respectively, in the polluted rural area of Huabei. Airborne measurements show that
throughout the PBL and in the lower free troposphere the levels of these pollutants
were also high. We observed widespread and high SO2 mixing ratios of 20–40 ppbv
at 0.5–1.5 km and 10–30 ppbv at 1.5–3.0 km altitude. Over the most highly polluted25

areas SO2 reached up to 60–100 ppbv in the PBL, much higher than at the surface ow-
ing to the predominantly elevated sources by industrial stacks. Average CO during the
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campaign period was ∼0.7 ppmv at 0.5–1.5 km altitude, and very high CO mixing ratios
of ∼1 ppmv were observed during some flights, and even higher levels at the surface.
The SO2 in the lower atmosphere over Huabei observed during IPAC-NC was a few
times higher than measured over an area in the northeastern part of China during April
2005, i.e. outside of the central pollution pool, and an order of magnitude higher than5

those over the NE United States (Dickerson et al., 2007).
Our chemical box-model simulations, constrained by the measurements, sug-

gest a maximum in the vertical profiles of OH and HO2 at an altitude of ∼1 km
over the polluted area of Huabei. The peak OH concentration is estimated to be
6.9×106 molecules cm−3 (∼0.29 pptv), substantially higher than the surface level of10

5.4×106 molecules cm−3 (∼0.22 pptv). It is shown that the combined effective photoly-
sis of ozone and the recycling of radicals in the photochemistry of NO2, CO, VOC and
SO2 lead to high levels of HOx radicals in the lower atmosphere over Huabei. At the
surface, high concentrations of NO2 suppress the recycling of HOx radicals by the ter-
mination reaction NO2+OH. In contrast, at higher altitudes within the PBL, CO and SO215

more effectively compete with relatively less NO2 to react with OH, recycling HO2 more
efficiently without a loss of total HOx. OH levels in the lower atmosphere over Huabei
appear to be similar to those over the Gulf of Mexico and 2–3 times higher than over
the subtropical Pacific (Singh et al., 2009). The relatively high OH concentrations in the
lower atmosphere over Huabei indicate that primary pollutants are efficiently oxidized20

before being transported to the Pacific and towards the North American continent.
At the high NOx levels over Huabei photochemical ozone formation is limited by the

radical abundance and the oxidation rates of CO and VOCs. We estimate that the con-
tribution of VOCs to instantaneous ozone production over Huabei, P(O3), is ∼85 % near
the surface and 60–75 % at higher altitudes in the PBL and lower free troposphere. The25

oxidation of CO contributes about 14 % to P(O3) at the surface and 12–25 % aloft. In-
terestingly, we find that the oxidation of SO2 also contributes significantly (up to ∼13 %
or 2.0 ppbv h−1 at 0.8 km) to ozone production. The estimated P(O3) rate at the surface
during IPAC-NC is 48 ppbv h−1, comparable to the high maximum value of 50 ppbv h−1
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at a suburban site of Beijing reported by Lu et al. (2010). Ozone production in the PBL
over Huabei (e.g., 16 ppbv h−1 at 0.8 km) appears to be much higher than that over
the polluted Asian continent during INTEX-B (>5 ppbv d−1 at 800 hPa), derived from
simulations by Zhang et al. (2008b) using a global model. Note that the IPAC-NC and
INTEX-B campaigns were performed in the same period, i.e., spring 2006.5

The high OH levels tend to promote the formation of semi- and low-volatile species
such as inorganic and organic acids through the oxidation of SO2, NO2 and VOCs.
In spring, the atmospheric load of primary aerosols over Huabei is very high due to
strong emissions from both natural and anthropogenic sources (e.g., dust and black
carbon), providing a large surface area for the condensation of these oxidation prod-10

ucts. The condensation rate of sulfuric acid is estimated to be 2–8 µg cm−3 h−1 during
IPAC-NC, with a maximum at about 0.8 km altitude. The calculated condensation po-
tential of secondary organics was much lower, with a maximum of ∼0.5 µg cm−3 h−1 at
the surface, though this is probably a lower limit. Our analyses nevertheless under-
score the importance of ozone and radical chemistry for the formation of secondary15

organic aerosols. The interactions between pollution emissions, photochemistry, the
atmospheric oxidation capacity and haze formation are intricate and require continued
investigations.
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Table 1. Overview of the aircraft measurements made during IPAC-NC.

Item Instrument Temporal resolution Measurement properties Invalid flights

SO2 TE43C 80 s DL: 0.1 ppvb RF02,
CO TE48C 1 s DL: 5 ppvb RF02, RF17, TF2
NOx TE42C 10 s DL: 0.1 ppvb RF02, RF07
O3 TE49C 20 s DL: 0.1 ppvb RF02
VOCs Canisters 2–4 samples flight−1 Alkanes, alkenes, aromatics TF2
PM10 Quartz filters 1–2 samples flight−1 Ions, element, EC/OC TF2
CN TSI-3020 1 s SR: >5 nm RF02, TF2
N1,aer TSI-EEPS-3090 1 s SR: 5.6 560 nm, 32 bins RF08–17, TF1–2
N2,aer TSI-APS-3310A 30 s SR: 0.47 30 µm, 58 bins TF2
N3,aer PCASP-100X 1 s SR: 0.1 3.0 µm, 15 bins RF04
Ncld FSSP-100 1 s SR: 2–47 µm 15 bins RF04
T EMM-01 1 s Accuracy: 0.008 ◦C RF02
Td DP3-D-SH 1 s Accuracy: 0.1 ◦C RF02
GPS GPS-Global Water 1 s

Ni ,aer and Ncld: aerosol and cloud number concentrations, respectively; DL: detect limit; SR: size range. See Table 2
for flight information.
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Table 2. Overview of aircraft flights performed during IPAC-NC.

Flight Flight description Flight route Date in Take off-Landing Flight altitude Weather
pattern 2006 Time (UTC) (m) condition

TF1 Changzhou-Tianjin Line 2 Apr 03:30–07:58 2500 Hazy
RF01 Huangzhuang Circle 9 Apr 01:54–05:50 2800∼400 Cloudy
RF02 Bohai (over sea) Circle 12 Apr 05:17–10:20 2800∼400 Hazy
RF03 Baodi-Jinghai-Tanggu Line 13 Apr 11:25–14:34 2500∼1000 Clear
RF04 Guojuzi-Haitiancun (over sea) Line 15 Apr 11:51–14:43 2000∼1000 Hazy
RF05 Tianjin-Tangshan region Area 16 Apr 01:52–05:46 2300∼1700 Cloudy
RF06 Bohai (over sea) Circle 17 Apr 01:56–06:28 2800∼400 Dusty
RF07 Tianjin-Tangshan region Square 18 Apr 01:58–06:31 2500∼1000 Cloudy
RF08 Jixian-Qingxian Line 22 Apr 02:10–06:03 2500∼500 Clear
RF09 Tianjin-Tangshan region Area 26 Apr 01:47–06:52 2700∼1000 Cloudy
RF10 Guojuzi-Haitiancun (over sea) Line 1 May 01:35–06:16 2000∼500 Hazy
RF11 Yutian-Beidagang Line 3 May 05:19–08:28 3000∼500 Hazy
RF12 Jixian-Qingxian-Ninghe Line 4 May 01:48–06:44 2500∼500 Cloudy
RF13 Tianjin North region Area 7 May 04:45–07:04 3000∼500 Hazy
RF14 Jixian-Qingxian (North) Line 9 May 08:14–11:04 3100∼2400 Cloudy
RF15 Jixian-Qingxian (South) Line 11 May 09:24–10:54 3100∼1200 Cloudy
RF16 Tianjin-Tangshan region Area 12 May 04:21–07:50 2000∼1500 Cloudy
RF17 Tianjin-Tangshan region Area 13 May 07:02–09:02 2700∼600 Clear
TF2 Tianjin-Changzhou Line 16 May 01:53–05:34 3000 Clear

Beijing Time is (UTC+8).
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Table 3. Summary of daytime meteorological parameters and trace gas mixing ratios (mean
value plus/minus standard deviation, and median value of the data) observed during IPAC-NC.

Parameter Surface 0.5–1.5 km altitude 1.5–3 km altitude
Mean±Std Median Mean±Std Median Mean±Std Median

Temperature (◦C) 17.2±6.0 17.6 12.6±5.2 12.1 5.0±6.0 4.3
Relative humidity (%) 41.6±23.4 36.0 56.4±24.5 58.5 49.8±22.2 43.0
SO2 24.7±20.9 18.6 37.0±18.7 32.6 26.2±12.9 25.5
NO 8.4±15.6 4.5 2.3±2.0 1.9 1.6±1.0 1.5
NOx

∗ 29.4±23.1 23.4 18.7±9.4 16.8 10.6±6.0 8.9
CO (ppmv) 1.5±1.0 1.2 0.67±0.64 0.47 0.23±0.15 0.17
O3 49.9±26.3 51.6 41.7±10.8 39.5 41.2±6.2 39.7
Ox 71.0±22.1 67.9 49.0±11.7 46.4 46.4±6.4 44.8
Ethane 3.12±1.54 2.84 – – – –
Ethylene 2.88±2.00 2.00 – – – –
Propylene 1.61±2.59 1.05 – – – –
Propane 2.23±1.95 1.68 0.25±0.18 0.19 0.15±0.16 0.09
n-Butane – – 0.49±0.48 1.05 0.16±0.14 0.11
Isobutane 1.12±1.22 0.69 0.30±0.26 0.21 0.09±0.07 0.05
1-Butene/Isobutene 1.06±3.02 0.00 0.35±0.38 0.28 0.20±0.26 0.07
Pentane 1.85±3.10 0.77 0.23±0.25 0.12 0.07±0.07 0.04
2-Methyl-butane – – 0.45±0.51 0.28 0.19±0.25 0.09
Pentene 0.64±1.94 0.00 0.06±0.23 0.00 0.01±0.04 0.00
n-Hexane 0.84±0.14 0.00 0.12±0.13 0.05 0.04±0.05 0.03
2,2-Dimethylbutane 0.32±0.55 0.00 0.03±0.06 0.01 0.02±0.03 0.00
2-Methylpentane 0.33±0.62 0.00 0.10±0.15 0.01 0.04±0.09 0.00
3-Methylpentane 0.31±0.77 0.00 0.07±0.09 0.03 0.04±0.07 0.01
4-Methyl-1-pentene 0.07±0.15 0.00 0.08±0.07 0.06 0.02±0.02 0.00
Benzene 16.63±25.41 5.51 0.88±0.59 0.79 0.28±0.24 0.19
n-Heptane 1.13±1.58 0.00 0.06±0.06 0.04 0.02±0.03 0.01
2,3-Dimethylpentane 0.45±1.12 0.00 0.16±0.31 0.03 0.09±0.16 0.01
2,4-Dimethylpentane 0.11±0.17 0.00 0.16±0.32 0.08 0.16±0.19 0.07
2-Methylhexane 0.37±0.84 0.00 0.04±0.04 0.00 0.02±0.04 0.00
Toluene 7.31±18.14 0.00 0.54±0.59 0.27 0.19±0.20 0.08
n-Octane 0.75±1.05 0.00 0.04±0.07 0.00 0.00±0.01 0.00
2,2,4-Trimethylpentane 0.11±0.17 0.00 0.05±0.15 0.00 0.10±0.29 0.00
2,3,4-Trimethylpentane 0.08±0.13 0.00 0.06±0.20 0.00 0.07±0.18 0.00
m,p-Xylene 2.23±3.44 0.03 0.14±0.20 0.00 0.10±0.15 0.02
Ethylbenzene 1.87±2.47 0.59 0.08±0.08 0.04 0.03±0.04 0.01
n-Nonane 0.13±0.45 0.00 0.05±0.11 0.00 0.09±0.38 0.00
1,2,4-Trimethylbenzene 1.46±1.96 0.11 0.05±0.05 0.04 0.05±0.08 0.02
Total alkanes 15.0±7.7 14.2 2.7±2.3 1.7 1.8±1.9 1.0
Total alkenes 8.1±7.6 6.0 1.0±0.9 0.8 0.5±0.6 0.2
Total aromatics 32.0±40.5 15.7 1.8±1.4 1.5 0.8±08 0.4
Total NMHCs 55.1±45.7 34.5 5.5±4.4 3.7 3.1±3.1 1.6

Units are ppbv except for specified parameters.
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Table 4. OH budget at different altitudes based on a model analysis of measurement data with
and without considering heterogeneous reactions (HR) of OH and HO2 on aerosol surfaces.

Item Surface 0.8 km 1.6 km 2.4 km
HR NO HR HR NO HR HR NO HR HR NO HR

Production (molecules cm−3 s−1) 2.4×108 2.5×108 8.3×107 1.0×108 3.9×107 4.3×107 2.2×107 2.3×107

NO+HO2 93 % 93 % 91 % 92 % 88 % 89 % 87 % 87 %
HNO2+hν 2 % 2 % 2 % 2 % 2 % 2 % 3 % 3 %
H2O+O(1D) 2 % 2 % 6 % 5 % 7 % 6 % 7 % 7 %
[CH3CHOO]∗ 1 % 1 % <1 % <1 % <1 % <1 % <1 % <1 %
H2O+CH3CH.(OO.) 1 % 1 % <1 % <1 % <1 % <1 % <1 % <1 %
H2O2+hν <1 % <1 % <1 % <1 % 1 % 1 % 1 % 1 %
remaining <1 % <1 % <1 % <1 % <2 % <2 % <2 % <2 %

Loss (molecules cm−3 s−1) 2.4×108 2.5×108 8.3×107 1.0×108 3.9×107 4.3×107 2.2×107 2.3×107

CO+OH 21 % 21 % 33 % 33 % 17 % 17 % 15 % 15 %
NO2+OH 18 % 18 % 14 % 14 % 17 % 17 % 21 % 21 %
C6H4CH3,,CH3+OH 8 % 8 % 1 % 1 % 2 % 2 % 2 % 2 %
CH3CH=CHCH3+OH 8 % 8 % 1 % 1 % <1 % <1 % <1 % <1 %
(CH3)2C=CH2+OH 6 % 6 % 6 % 6 % 5 % 5 % 5 % 5 %
CH3CHO+OH 5 % 5 % 4 % 4 % 3 % 3 % 2 % 2 %
C6H5CH3+OH 3 % 3 % 1 % 1 % <1 % <1 % <1 % <1 %
SO2+OH 3 % 3 % 16 % 16 % 15 % 15 % 16 % 16 %
CH2O+OH 3 % 3 % 6 % 6 % 6 % 6 % 5 % 5 %
C3H6+OH 3 % 3 % 2 % 2 % 2 % 2 % 2 % 2 %
CHOCH=C(CH3)CHO+OH 3 % 3 % <1 % <1 % <1 % <1 % <1 % <1 %
NO+OH 3 % 2 % 2 % 2 % 2 % 2 % 3 % 3 %
CH4+OH <2 % <2 % 2 % 2 % 2 % 2 % 3 % 3 %
C9H13CH3+OH <2 % <2 % <2 % <2 % 7 % 7 % 6 % 6 %
dtA1+OH <2 % <2 % <2 % <2 % 6 % 6 % 5 % 5 %
remaining <16 % <17 % <12 % <12 % <16 % <16 % <15 % <15 %

Concentration (molecules cm−3) 5.4×106 5.7×106 6.9×106 8.5×106 4.7×106 5.2×106 3.8×106 4.1×106

dtA1: CH3CO′CH′CH′
2CH(CH2CHO)′CCH3CH3.
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Table 5. HO2 budget at different altitudes based on a model analysis of measurement data with
and without considering heterogeneous reactions (HR) of OH and HO2 on aerosol surfaces.

Item Surface 0.8 km 1.6 km 2.4 km
HR NO HR HR NO HR HR NO HR HR NO HR

Production (molecules cm−3 s−1) 2.2×108 2.3×108 8.0×107 9.7×108 3.6×107 3.8×107 1.9×107 2.0×107

CO+OH 22 % 22 % 34 % 35 % 19 % 19 % 17 % 17 %
CH3O+O2 9 % 9 % 8 % 8 % 8 % 8 % 8 % 8 %
CH3CH(OH)CH(O.)CH3 8 % 8 % 1 % 1 % <1 % <1 % <1 % <1 %
C6H3CH3,HOH,CH3/(OO.)+NO 7 % 7 % 1 % 1 % 2 % 2 % 2 % 2 %
CH3COCH=CHCHO+hν 4 % 4 % 1 % 1 % 1 % 1 % 1 % 1 %
CH2O+hν 4 % 4 % 9 % 7 % 13 % 12 % 16 % 15 %
CH3COCH(O.)CHO+O2 4 % 4 % 1 % 1 % 1 % 1 % 1 % 1 %
CH2O+OH 3 % 3 % 7 % 7 % 6 % 6 % 6 % 6 %
SO2+OH 3 % 3 % 17 % 17 % 16 % 17 % 18 % 18 %
CH3C(OH)(CH3)CH2(O.) 3 % 3 % 3 % 3 % 3 % 3 % 2 % 2 %
CH2(OH)C(O.)(CH3)CH3 3 % 3 % 3 % 3 % 3 % 3 % 2 % 2 %
CH2(OH)(OO.) 2 % 2 % 2 % 2 % 2 % 2 % 2 % 2 %
CH3COCHO+hν 2 % 2 % 1 % 1 % 2 % 2 % 2 % 2 %
[CH3CHOO]∗ 2 % 2 % <1 % <1 % <1 % <1 % <1 % <1 %
C9H12CH3, (O.), HOH <2 % <2 % <2 % <2 % 7 % 7 % 7 % 7 %
remaining <24% <24% <12% <13% <17% <17% <16% <17%

Loss (molecules cm−3 s−1) 2.2×108 2.3×108 8.0×107 9.7×108 3.6×107 3.8×107 1.9×107 2.0×107

NO+HO2 98 % 99 % 94 % 98 % 95 % 98 % 96 % 98 %
HO2+surface 1 % – 4 % – 3 % – 2 % –
CH2O+HO2 <1 % <1 % 1 % 1 % 1 % 1 % 1 % 1 %
O3+HO2 <1 % <1 % <1 % <1 % 1 % 1 % 1 % 1 %
HO2+HO2 <1 % <1 % <1 % 1 % <1 % <1 % <1 % <1 %
remaining <1 % <1 % <1 % <1 % <1 % <1 % <1 % <1 %

Concentration (molecules cm−3) 1.2×108 1.3×108 1.8×108 2.3×108 1.0×108 1.1×108 6.3×107 6.7×107
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Table 6. Ozone budget at different altitudes based on a model analysis of measurement data
with and without considering heterogeneous reactions (HR) of OH and HO2 on aerosol sur-
faces.

Item Surface 0.8 km 1.6 km 2.4 km
HR NO HR HR NO HR HR NO HR HR NO HR

Production (ppbv hr−1) 48.3 51.6 15.5 19.6 8.4 9.3 4.9 5.3
NO+HO2 65 % 65 % 74 % 75 % 67 % 68 % 70 % 70 %
CH3(OO.)+NO 6 % 6 % 6 % 6 % 6 % 5 % 6 % 6 %
CH3CH(OH)CH(OO.)CH3+NO 5 % 5 % 1 % 1 % <1 % <1 % <1 % <1 %
CH3CO(OO.)+NO 3 % 3 % 4 % 4 % 3 % 3 % 2 % 2 %
C6H3CH3,HOH,CH3/(OO.)+NO 2 % 2 % 1 % 1 % 1 % 1 % 1 % 1 %
CH3C(OO.)(CH3)CH2(OH)+NO 2 % 2 % 2 % 2 % 2 % 2 % 2 % 2 %
CH3C(OH)(CH3)CH2(OO.)+NO 2 % 2 % 2 % 2 % 2 % 2 % 2 % 2 %
CH3COCH=CHCO(OO.)+NO 2 % 2 % 1 % 1 % <1 % <1 % 1 % 1 %
C9H12(CH3)(OO.)H(OH)+NO 1 % 1 % <1 % <1 % 5 % 5 % 5 % 5 %
2t91+NO <1 % <1 % <1 % <1 % 2 % 2 % 2 % 2 %
remaining <12 % <12 % <9 % <8 % <12 % <12 % <9 % <9 %

Loss (ppbv hr−1) 8.5 9.1 2.8 3.2 1.7 1.9 1.2 1.3
NO2+OH 69 % 70 % 66 % 70 % 62 % 63 % 68 % 69 %
CH3CH=CHCH3+O3 16 % 15 % 1 % 1 % <1 % <1 % <1 % <1 %
O3+surface 8 % 7 % 15 % 13 % 14 % 13 % 10 % 10 %
H2O+O(1D) 3 % 3 % 13 % 12 % 13 % 12 % 11 % 11 %
C9H13CH3+O3 1 % 1 % <1 % <1 % 6 % 6 % 5 % 5 %
O3+HO 1 % 1 % 2 % 2 % 2 % 2 % 2 % 3 %
O3+HO2 1 % 1 % 2 % 1 % 2 % 2 % 1 % 1 %
remaining <1 % <2 % <1 % <1 % <1 % <2 % <3 % <1 %

Net production (ppbv hr−1) 39.7 42.5 12.7 16.3 6.7 7.4 3.7 4.0

2t91: CH3CO′CH′CH′
2CH(CH2OO.)′CCH3CH3.
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Fig. 1. Primary pollutant emissions in the central area of Huabei.
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Fig. 2. Model simulated wind fields and spatial distributions of pollution tracers emitted from
major urban centers of Huabei. Mountain areas are masked by blanks. The model predicts an
air pollution pool over the Jing-Jin-Tang area.
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Fig. 3. Vertical column densities of tropospheric NO2 during IPAC-NC. (a) OMI satellite data.
(b) RCTM simulated results. (c) Percentage contributions from industrial, traffic, and other
sources estimated with a tracer-tagging method. Industrial emissions predominantly contribute
to the air pollution pool.
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Fig. 4. YUN-12 individual flight tracks during IPAC-NC colored by altitude. Two transfer flights
and 17 research flights were performed from 2 April to 16 May 2006.
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Fig. 5. Superposition of 17 research flight tracks during IPAC-NC. Majority of flights were
performed within the core area of the air pollution pool.
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Fig. 6. Diurnal cycles of (a) SO2, (b) NO, (c) NO2, (d) CO, (e) O3, and (f) Ox at the Beigongda
(urban) and Xin’an (rural) sites during IPAC-NC. Lower (upper) error bars and yellow boxes are
10th (90th) and 25th (75th) percentiles of the data grouped in one-hour intervals, respectively.
Hyphens inside the boxes are the medians and red circles the mean values.
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Fig. 7. Diel variations of alkanes, alkenes and aromatics as a function of local standard time
as measured at (a) the Beigongda (urban) site and (b) the Xin’an (rural) site during IPAC-NC.
Error bars are standard deviations of total NMHCs in the upper direction.

27757

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/27701/2011/acpd-11-27701-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/27701/2011/acpd-11-27701-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 27701–27762, 2011

The IPAC-NC field
campaign

J. Z. Ma et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 8. Flight track of all data collected from the aircraft below (left) and above (right) 1.5 km
colored by (a) SO2, (b) NO, (c) NOx

∗, (d) CO, (e) O3, and (f) Ox mixing ratios during IPAC-NC.

27758

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/27701/2011/acpd-11-27701-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/27701/2011/acpd-11-27701-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 27701–27762, 2011

The IPAC-NC field
campaign

J. Z. Ma et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

0

1

2

3

A
lti

tu
de

 (k
m

)

0 20 40 60
SO2 (ppbv)

0 5 10
NO (ppbv)

0 20 40

NOx* (ppbv)
0 1 2

CO (ppmv)
0 30 60

O3 (ppbv)
0 30 60 90 120

Ox (ppbv)

0 5 10 15
Alkanes (ppbv)

0

1

2

3

A
lti

tu
de

 (k
m

)

0 3 6 9
Alkenes (ppbv)

0 10 20 30
Aromatics (ppbv)

0 20 40 60
NMHCs (ppbv)

Fig. 9. Vertical profiles of gaseous pollutants measured by aircraft combined with daytime
surface measurements at the Xin’an station. Black solid lines are mean values, colored dashed
lines are 10th and 90th percentiles of the data for inorganic gases, and colored dots are values
for each VOC sample. Ox is O3 plus NO2, the latter derived by scaling measured NO with the
NO2/NO ratios simulated with our RCTM.
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Fig. 10. Size distributions of (a) aerosol number and (b) surface area as a function of altitude,
measured by aircraft. 27760
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Fig. 11. Vertical profiles of (a) OH, (b) HO2, and (c) O3 production rates, calculated using
the NCAR Master Mechanism constrained by measured daytime mean trace gas and aerosol
concentrations. BASE refers to the standard simulation, and NO S and NO H to sensitivity
simulations without considering SO2 related reactions and heterogeneous reactions of OH and
HO2 on aerosol surfaces, respectively.
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Fig. 12. Vertical profiles of (a) sulfuric acid and VOC oxidation products and (b) their condensa-
tion potential on aerosol surfaces calculated using the NCAR Master Mechanism constrained
by measured daytime mean trace gas and aerosol concentrations.
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